Molecular Dynamics Simulations of the Bacterial UraA H+-Uracil Symporter in Lipid Bilayers Reveal a Closed State and a Selective Interaction with Cardiolipin
نویسندگان
چکیده
The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a "proton trap" that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.
منابع مشابه
Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملCardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of prote...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملStructural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.
The detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAX...
متن کاملThree new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...
متن کامل